$$
\begin{aligned}
& \text { 19. a) (1) }\left[\frac{1}{2} x+\frac{2}{3} y^{2}=1\right]^{6}\left(2 \frac{1}{4} x-\frac{1}{3} y=\frac{5}{2}\right. \\
& 3 x+4 y=6^{-4 y} \\
& \frac{3 x}{3}=\frac{6}{3}-\frac{4 y}{3} \quad \frac{1}{4}\left(2-\frac{4}{3} y\right)-\frac{1}{3} y=\frac{5}{2} \\
& \begin{array}{l}
x=2-\frac{4}{3} y \\
=2-4(-3)
\end{array} \quad\left[\begin{array}{l}
{\left[\frac{2^{12}}{4}-\frac{x^{x / 2}}{12} y-\frac{1^{12}}{3} y=\frac{57}{2}\right]^{12}} \\
6-4 y-4 y=30
\end{array}\right. \\
& x=2-\frac{4}{3}(-3) \\
& x=2+\frac{12}{3} \\
& x=2+4 \\
& x=6
\end{aligned}
$$

Substitution: good when a coeffreient二 ONE
ex/ (1) $2 x+y=-13$
(2) $3 x-2 y=-1$
(1) $y=-2 x-13$
sub (1) into (2): $3 x-2(-2 x-13)=-1$

$$
\begin{gathered}
3 x+4 x+26=-1^{-26} \\
\frac{7 x}{7}=\frac{-27}{7} \\
x=-\frac{27}{7}
\end{gathered}
$$

Sulo back into (1) or (2) and get y
7.5 Solving Systems by Elimination

* Important: This method is most useful when the coefficient of one of the variables in both equations is the same.
ex. Solve the following system algebraically:

$$
\frac{\left\{\begin{array}{l}
4 x-2 y=10 \tag{1}\\
5 x+2 y=26
\end{array}\right.}{\frac{9 x+2 y}{9}=\frac{36}{9}}
$$

(2) $5(4)+2 y=26$

Step 1: * male sure the similar variables are alligned

* add or subtract the equ"s to eliminate one variable
Step 2: sub x buck into either (1) or (2) and solve for y
* Note: If none of the coefficients are the same, this method still works but we need to multiply one, or both, equations by a value that will allow this method to work. If we graph

ex. Solve the following system algebraically:

$$
\begin{cases}4 x-2 y=2 \\ 3 x+y=-6 & +(2) \times 2\end{cases}
$$

$$
\begin{aligned}
& 4 x-2 y=2 \\
& 6 x+2
\end{aligned}
$$

(1) $\begin{aligned} & 6 x+2 y=-12 \\ & \frac{10 x}{10}=\frac{-10}{10}\end{aligned} x=-1$
sub $x=-1$ bact into (2)

$$
\begin{gathered}
3(-1)+y=-6 \\
-3+y=-6 \\
y=-3
\end{gathered}
$$

Step 1: choose a variable to eliminate then multiply one or both equns so that the coefficients of that step 2: variable are the
add or sere. add or subtract
as necessary step 3: sub variable bock into (1) or (2)
ex. Solve the following system algebraically:
$\left\{\begin{array}{l}\frac{3 x^{2}}{2}-\frac{1}{2} y^{2}=4^{x^{2}} \\ \frac{1}{2} x+\frac{1}{4} y=\frac{5}{2}\end{array}\right.$
(1) $\times 2$
(1) $3 x-y=8$
(土) (2) $2 x+y=10$
$\frac{5 x}{5}=\frac{18}{5} \Rightarrow x=\frac{18}{5}$
Sub $x=\frac{18}{5}$ into (1)

$$
\begin{aligned}
3\left(\frac{18}{5}\right)-y & =8 \\
\frac{54}{5}-y & =\frac{8}{7} \times 5 \\
\frac{54}{5}-y & =\frac{40}{5} \\
+y & =\frac{14}{5} \\
y & =\frac{14}{5}
\end{aligned}
$$

Step 1: remove all fractions first
\rightarrow then decide which variable to eliminate
Step 2:
solve

Step 3: Sub back ito (1) \& (2)
ex. Solve the following system algebraically:

$$
\left\{\begin{array}{l}
3 x-4 y=7 \text { (1) } \times 9 \\
5 x-6 y=8 \quad \text { (2) } \times 3
\end{array}\right.
$$

$$
15 x-20 y=35
$$

$$
\theta 15 x-18 y=24
$$

sub back into o or (2) and got x

Step 1:

Step 2:

Step 3:
ex. Lilly sold 5 bouquets of tulips and 2 bouquets of roses for $\$ 80$. Kate sold 1 bouquet of tulips and 4 bouquets of roses for $\$ 70$. Write a system of equations that models this situation and solve it using elimination.

$$
\begin{align*}
& \text { let } x=\cos \text { of tulips } y=\cos t \text { of roses } \\
& \text { Lilly: } 5 x+2 y=80 \tag{1}\\
& \text { kate: } x+4 y=70 \tag{2}\\
& \text { 2x(1)-(2) } \\
& \text { ar } \\
& \text { (1) }-5 \times(2) \\
& 10 x+4 y=160 \\
& \text { (1) } 5 x+2 y=80 \\
& \frac{\theta x+4 y=70}{\frac{9 x}{9}=\frac{90}{9}} \\
& \text { © } 5 x+20 y=350 \\
& \rightarrow \begin{array}{l}
x=10 \\
\text { subito (1) or (2) get } e^{61 x}
\end{array}
\end{align*}
$$

Homefun: Pg. 437 \# (3, 4, 6) ac, 8, 10, 12ac, 14, 16, 22

