(2c), 3c), 22
3c) $3 x^{2}-4 y=1 \quad \rightarrow$ sub $y=-1$ into

$$
\begin{gathered}
3 x-4(-1)=1 \\
3 x+4=1 \\
\frac{3 x=-3}{3}=\frac{-3}{3} \\
x=-1
\end{gathered}
$$

12.c)

$$
\left.\begin{array}{l}
0.03 x+0.15 y=0.027 \times 50 \\
-0.5 x-0.5 y=0.05 \times 3
\end{array}\right\}(2) \times 3-0 \times 50
$$

(2) $-1.5 x-1.5 y=0.15$
(1) (1) $1.5 x+7.5 y=1.35$

$$
D \quad 6 y=\frac{1.50}{6} \Rightarrow y=0.25
$$

\#22. Let $x=$ the arwout muested in the stock

$$
\begin{align*}
& y=11 \\
& 10.5 \% x+3.5 \% y=84 \tag{1}\\
& 0.105 x+0.035 y=84 \text { (1) } \\
& 3.5 \% x+10.5 y=14 \\
& 0.035 x+0.105 y=14
\end{align*}
$$

7.6 Properties of Linear Systems

* Systems of linear equations may have...
one solution

* slopes are different
no solution

* slopes are
the same
* y-intercepts are
different

* slopes are the same
* y-intercepts are the same
the easiest form of eqny to use is $y=m x+b$ (slope/y-int.) ex. Find the number of solutions to each system without solving.
a)

$$
\begin{aligned}
& 2 x+y=8 \\
& 4 x+2 y=16
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \text { (1) } y=-2 x+8 \\
& \text { (2) } \begin{aligned}
2 y & =-\frac{4 x}{2}+\frac{16}{2} \\
y & =-2 x+8
\end{aligned}
\end{aligned}
$$

\therefore Since the equation o represent coincident lives, there are infinite sols.
b)

$$
\left.\begin{array}{rl}
\begin{array}{l}
3 x+y=9 \\
6 x+2 y=12
\end{array}(2) \tag{2}\\
6 x+2
\end{array} \Rightarrow \begin{array}{l}
y=-3 x+9 \\
2
\end{array}\right)
$$

(1) -Same slope
\therefore the lines are parallel bat distinct (different) \therefore Nosy ln
C) $x+y=8$
(1) $y=-x+8$ different

$$
-5 x+y=1
$$

(2) $y=5 x+1$
\therefore-one point of intersection
ex. Given the equation $-2 x+y=4$ (1), write another equation that will form a system with:
a) one solution
b) no solutions
c) infinite solutions
(1) $-2 x+y=4$
(1) $-2 x+y=4$
(1) $-2 x+y=4$
(2) $y=-3 x-2$
(2) $-4 x+2 y=7$
(2) $-4 x+2 y=8$
(2) $-473 x+2 y=6$
(2) $-4 x+2 y=2$
(2) $2 x-y=-4$
reviews
(2)

Homefun: Pg. 448 \# 4-9, 13, 15, 16

