8.1 Solving Systems Graphically

* The solutions to a system of equations are the coordinates of the points of intersection, if they exist, of the graphs of the functions.
$>$ with 2 linear equations, there can be 0 , 1 , or infinite solutions

* parallel lines
* same slope

* different slopes

* coincident lines
\rightarrow multiples of one another
> with 1 linear equation and 1 quadratic equation, there can be 0,1 , or 2 solutions

no sol 1^{12}

\rightarrow tangent live
\rightarrow vertical line

> with 2 quadratic equations, there can be $0,1,2$ or infinite solutions

no sol ${ }^{12}$

one solve

$$
2 \text { sol } 1^{15}
$$

AND coincident parabolas yield ∞ sol ns
ex. Solve graphically:

$$
\begin{aligned}
& 4 x-y+3=0 \\
& 2 x^{2}+8 x-y+3=0
\end{aligned}
$$

(1) $y=4 x+3$
(2) $y=2 x^{2}+8 x+3$
calculator

$$
\begin{aligned}
x & =\frac{-b}{2 a} \\
& =\frac{-8}{2(2)}=-2
\end{aligned}
$$

(2) $2^{\text {nd }}$ call
(1) plot both eqws

$$
\begin{aligned}
& =\frac{-8}{2(2)}=-2 \\
& 2(-2)^{2}+8(-2)+3
\end{aligned}
$$

your turn pg. 429
(3) move cursor close

$$
\begin{aligned}
& =8-16+3 \\
& =-5
\end{aligned}
$$ to a POI

(4) press enter 3 times
ex. Solve graphically:

$$
\begin{aligned}
& \text { Solve graphically: } \\
& 2 x^{2}-16 x-y=-35 \\
& 2 x^{2}-8 x-y=-11
\end{aligned} \Rightarrow y=2 x^{2}-16 x+35
$$

Algebraically

$2 x^{2}-16 x+35=$
Since the

$$
\rightarrow 35-11
$$

$=-8 x+16 x$

same leading coefficient, the
Your turn pg. 430
parapolas have the
resulting equn is linear. Thus, there is only one POI.

Homefun: Pg. 435 \#1-3, 4acd, 7, 9-11, 14, 17

