8.4 Graphs of Sinusoidal Functions

Desmos: Trigonometric Graphing \& Graphing the Sine Function

EXAMPLE 1 Determining the characteristics of a cosine function based on its equation

Consider the function
for $\left\{x \mid 0^{\circ} \leq x \leq 360^{\circ}, x \in \mathrm{R}\right\}$. $\quad y=2 \cos 4 x \notin 1$
a) Describe the graph of the function by stating the amplitude, equation of the midline, range, and period, as well as the relevant horizontal translation of $y=\cos x . D y=1 \quad$ Range: $\{y \in \mathbb{R} \mid-1 \leqslant y \leqslant 3\} \mathbb{Z}$
b) Verify your description by drawing a graph of this function using graphing technology.

Repeat for: $y=5 \cos \frac{1}{2} x-3$

$$
R \text { range: }\{y \in \mathbb{R} \mid-8 \leq y \leq 2\}
$$

$$
\text { amp }=5 \quad \text { midline: } y=-3 \quad T=\frac{2 \pi}{1 / 2}=4 \pi
$$

EXAMPLE 2 Determining the characteristics of a sine function based on its equation

Consider the function

$$
y=3 \sin 2\left(x-45^{\circ}\right)
$$

a) Describe the graph of the function by stating the amplitude, equation of the midline, range, and period, as well as the relevant horizontal translation of $y=\sin x$.
b) Verify your description by drawing the graph using graphing technology.
c) How would the graph of $y=3 \cos 2\left(x+45^{\circ}\right)$ be the same? How
a) $\operatorname{amp}=3$

$$
\theta r y=-3 \cos 2 x
$$

Without graphing first, repeat for: $y=4 \cos 3\left(x-60^{\circ}\right)+$
 period $\prod_{60^{\circ}}^{0^{4} 10^{\circ} 180^{\circ}}$ range: $-4 \leq y \leq 4$ phase shift: 60° right EXAMPLE 3 Matching equations to graphs

Match each graph with the corresponding equation below.
a)

(i)) $y=4 \cos \left(x-90^{\circ}\right)+1$
ii) $y=5 \sin 3\left(x-60^{\circ}\right)$
iii) $y=4 \sin 3\left(x-60^{\circ}\right)+1$
iv) $y=4 \cos 3\left(x-60^{\circ}\right)+1$

Graph 2
 $b=\frac{360^{\circ}}{360^{\circ}}$ $b=1$

EXAMPLE 4 Solving a problem using a sinusoidal function
The Far North is called "the Land of the Midnight Sun" for a good reason: during the summer months, in some locations, the Sun can be visible for 24 h a day. The number of hours of daylight in Iqaluit, Nunavut, can be represented by the function

$$
y=8.245 \sin [0.0172(x-80.988)]+12.585
$$

where x is the day number in the year.
a) How many hours of daylight occur in Iqaluit on the following days?
i) the shortest day of the year $\approx 4,3$
ii) the longest day of the year ≈ 20.8
b) In some years, June 21 is the longest day. Suppose that the Sun were to set in Iqaluit at 11:01 p.m. on June 21. At what time did the Sun rise? $\rightarrow 3.2$ hrs of no Sum
c) What is the period of this sinusoidal $\rightarrow 2: 13$ function? Explain how the period relates to the context of the problem.
d) What does the value of $c, 80.988$, represent in the context of the problem?

The Sun rising in Iqaluit on the shortest day

Pg. 558 \# 5-9, 11, 13, 15, 16, 21

$$
\text { C) } \begin{aligned}
T & =\frac{2 \pi}{6} \\
& =\frac{2 \pi}{0.0172} \\
& =365.3 \text { days }
\end{aligned}
$$

d) phase shift $=81$ days to the 81 days to the first right equinox (march 21) which is where the sin graph
begins

In Summary

Key Idea

- Any sinusoidal function can be expressed as either a cosine function or
a sine function. \rightarrow phase shift of

Need to Know

- A sinusoidal function of the form

$$
\begin{aligned}
& y=a \sin b(x-c)+d \text { or } \\
& y=a \cos b(x-c)+d
\end{aligned}
$$

has the following characteristics:

- The value of a is the amplitude:

$$
a=\frac{\text { maximum value }- \text { minimum value }}{2}
$$

- The value of b is the number of cycles in 360° or 2π. The period is $\frac{360^{\circ}}{b}$ or $\frac{2 \pi}{b}$.
- The value of c indicates the horizontal translation that has been applied to the graph of $y=\sin x$ or $y=\cos x$.
- The equation of the midline is

$$
y=d
$$

where

$$
d=\frac{\text { maximum value }+ \text { minimum value }}{2}
$$

- The maximum value is $d+a$, and the minimum value is $d-a$.
- In the graph of a sine function, c is the distance from the vertical axis to the first midline point where the function is increasing.

- In the graph of a cosine function, c is the distance from the vertical axis to the first maximum point.

