9.1 Inequalities in Two Variables exclusive inclusive

* Symbols of inequality:
* graphically, $x \leq 5$ looks like:

* A linear inequality in two variables however, describes an area on a cartesian plane either above or below the line:
ex. $y \leq x-2$ looks like...

(1) graph $y=x-2$
(2) teat a point:
false $\therefore(0,0): 0 \leqslant 0-2$
$0 \leqslant-2)$ is

* If we have an exclusive inequality (< or >), we represent the boundary by a dotted line to indicate that the line itself is not part of the solution.
* To determine which side of the boundary is shaded, simply test a coordinate to see if it satisfies the inequality
ex. graph $y>0.5 x+1$
(1) graph $y=0.5 x+1$ with a
(2) tent $(0,0)$:
\therefore the sols does

$$
\begin{array}{ll}
0>0,5(0)+1 & \text { NoT } \tag{0,0}\\
0>0) \\
0>1 \text { false } & (0,0)
\end{array}
$$

ex. graph $10 x-5 y>15$

$10 x-5(0)=15 \quad 10(0)-5 y=15$

$$
\begin{aligned}
10 x & =15 / 10 \\
100 & =15 / 10 \\
x & =3 / 2
\end{aligned}
$$

$$
5 \text { dotted line }
$$

$$
\begin{aligned}
& \text { Your turn pg. } 468 \\
& 5 x-20 y<0 \\
& \text { graph equality line } \\
& 5 x-20 y=0 \\
& \rightarrow \text { both } x \text { and } y \text {-int }=0 \\
& \text { write as } y=i n x+b
\end{aligned}
$$

$$
\text { write as } y=m x+b
$$

$$
\frac{-20 y}{-20}=\frac{-5 x}{-20}
$$

$$
\begin{aligned}
& \text { foot }(0,1): 5(0)-20(1)<0 \\
& -20<0 \\
& \text { true so colour the } \\
& \begin{array}{l}
\text { socle of the graph } \\
\text { containing }(0,1)
\end{array}
\end{aligned}
$$

ex. What Inequality is represented here?

- get equation of line

$$
\Rightarrow y=m x+b
$$

- is the boundary inclusive?

doted so... $\Rightarrow\langle$ on \rangle
NO
- test a point to determine direction of sign $\rightarrow(0,0)$

$$
\begin{array}{rl}
L S=0 & R S \\
L S & =-2(0)-3 \\
R S & =-3
\end{array}
$$

$$
0>-3
$$

$$
\therefore \quad y>-2 x-3
$$

since LS $>R S$

$$
\begin{gathered}
\text { your turn pg. } 469 \\
Y=-2 x-2 \\
\text { teat }(0,0) \\
L S=0, ~ R S=-2
\end{gathered}
$$

