9.2 Quadratic Inequalities in one variable

ex. solve $x^{2}-2 x-3 \leq 0 y$
Option 1: Use the graph to draw a conclusion
graph $y=x^{2}-2 x-3$
$=(x-3)(x+1)$
ADs: $x=1$

$$
\text { vertex: } \begin{aligned}
y & =(1)^{2}-2(1)-3 \\
y & =-4
\end{aligned}
$$

So ln
$-1 \Leftrightarrow x \leqslant 3$
Option 2: Use the roots of the equation and test points.

from above the roots are $x=-1$ and 3
test points in each interval

$$
x=-2: \quad x^{2}-2 x-3 \leqslant 0
$$

$$
\begin{aligned}
& (-2)^{2}-2(-2)-3 \leq 0
\end{aligned}
$$

test $x=0 ; \quad(0)^{2}-2(0)-3 \leqslant 0$
$\underset{\text { part of } \uparrow}{\text { par }}-3 \leq 0$ trine
toot $x-5: \begin{array}{r}(5)^{2}-2(5)-3 \leq 0 \\ (12 \leq 0) \\ \text { fobs }\end{array}$

$$
\begin{aligned}
& \text { Sol } \\
& -1 \leq x \leq 3 \\
& \theta \Omega \\
& x=[-1,3] \\
& \text { square bracket } \\
& \text { means inclusive }
\end{aligned}
$$

Your turn pg. 479

ex. solve $-\sqrt{x^{2}+x<-12}$
Option 1: Use the graph to draw a conclusion

$$
\begin{aligned}
& 0< x^{2}-x-12 \\
& 0<(x-4)(x+3) \\
& x \\
& x=4
\end{aligned}
$$

$\therefore x>4$ and $x<-3$
or $(-\infty,-3) \cup(4, \infty)$ round bracket for exclusive

Option 2: Use the roots of the equation and test points.

$$
\text { fest } x=-10=-(-10)^{2}+(-10)<-12
$$

$$
-100-10<-12
$$

$$
-110<-12 \text { true } \therefore x=-10 \text { is }
$$

\therefore Since this is quadratic with 2 roots $x=10$ will also satisfy the inequality

$$
\therefore x>4 \text { and } x<-3
$$

IN the so ln

