9.5 Compositions of functions

Two functions, f and g, can combined using a process called composition, which can be represented by f(g(x)). The input value for g is used as the output value for f.

Notation:
$$f(g(x)) = (f \circ g)(x)$$
 not multiplication

This is sometimes read as "f map g" or fog(x). The point (a,b) on the function g gets mapped onto the function f as (b,c). As a result the point becomes (a,c) or fog(x). See pg. 551.

Ex. For $f(x) = \underline{2x+3}$ and $g(x) = \sqrt{x}$, determine:

a)
$$(f \circ g)(x)$$
 a) $f(g(x)) = 2\sqrt{x} + 3$
b) $(g \circ f)(x)$

c)
$$(f \circ f)(x)$$

d) $(g \circ g)(x)$
 $\int (f(x)) = \sqrt{2 \times + 3}$

c)
$$f(f(x)) = 2(2x+3)+3$$

= $4x+6+3$
= $4x+9$
d) $g(g(x)) = \sqrt{x}$
= $(x^{1/2})^{\frac{1}{2}}$
= $x^{1/2}$

It should be noted that $(f \circ g)(x)$ exists only where an element in the range of g is also in the domain of f. The function $(f \circ g)(x)$ exists only when the range of goverlaps the domain of f.

Ex. Let $f(x) = \log_2 x$ and g(x) = x + 4

(and etermine fore) (1), and find its domain

domain:
$$\chi + 4 > 0$$
 $\left\{\chi \in \mathbb{R} \mid \chi > -4\right\}$ $\left\{\chi \in \mathbb{R} \mid \chi > -4\right\}$ $\left\{\chi \in \mathbb{R} \mid \chi > -4\right\}$ $\left\{\chi \in (-4, \infty)\right\}$

Ex. Given $h(x) = |x^3 - 1|$, find two functions, f and g, such that $h = f \circ g \cap (g(x))$

that
$$h = f \circ g + (g(x))$$

try
$$f(x) = |x|$$

$$g(x) = x^{3} - 1$$

$$g(x) = x^{3}$$

$$f(x) = |x - 1|$$

$$g(x) = x^{3}$$

Ex. If
$$f(x) = \frac{1}{x-2}$$
, show that $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x)$.

$$f(f^{-1}(x)) = f^{-1}(f(x)) \dots | \text{let's find } f^{-1}(x)$$

$$f(x) = \frac{1}{x-2} \implies x = \frac{1}{y-2}$$

$$y = \frac{1}{x} + z \implies f^{-1}(x) = \frac{1}{x+2}$$

$$= \frac{1}{(x-2)} + z \qquad \text{and} \qquad f(f^{-1}(x))$$

$$= x - z + z \qquad (\frac{1}{x+2}) - z$$

$$= x$$

$$y = x$$

NB composing a function with its overse yields
$$y = x$$

Homefun: Pg. 552 #(1-3, 5-7)ac, 11