Review: Equation Solving

To solve an equation we must isolate the unknown variable by using inverse._operations. One easy trick is to use the mnemonic BEDMAS backwards.

Solve the following equations

$$
\begin{aligned}
& +5 \\
& \text { a) } 2 x-5=7+8 \\
& \frac{2 x}{2}=\frac{12}{2} \\
& x=6 \\
& \text { b) } \underset{\sim}{3(x-4)}=5 x+2 \\
& \underset{-3 x-12}{3 x-2}=5 x+2 \\
& \begin{aligned}
-\frac{14}{2} & =\frac{2 x}{2} \\
x & =-2
\end{aligned} \\
& \text { c) } 4-5(x+3)=2(x-6) \\
& \begin{aligned}
& 4-5 x-15=2 x-12 \\
& 1285 x \\
& \frac{1}{7}=\frac{7 x}{7}
\end{aligned} \quad \therefore x=\frac{1}{7} \\
& \text { d) }(x+1)(x-2)-(x+3)(x-4)=2 x \\
& \left(x^{2}-2 x+x-2\right)-\left(x^{2}-4 x+3 x-12\right)=2 x \\
& \left(x^{2}-x-2\right)-\left(x^{2}-x-12\right)=2 x \\
& x^{1}-x-2-x^{2}+x+12=2 x \\
& \frac{10}{2}=\frac{2 x}{2} \\
& 5=x
\end{aligned}
$$

e) $\left[\frac{2}{3}(x-5)=(x+4)\right] \times 3$
$3 \times \frac{2}{k}(x-5)=3(x+6)$
$2 x-10=3 x+n$

$$
-22=x
$$

$$
\begin{aligned}
& \text { g) } \frac{(2 x-6)}{5}=(3 x+5) \\
& 4(2 x-6)=5(3 x+5) \\
& 8 x-24=18 x+25 \\
& \frac{-7 x}{-7}=\frac{49}{-7} \\
& x=-7
\end{aligned}
$$

f) $\left[\frac{3}{4}(x-5)=\frac{1}{3}(x+4)\right] \times n$
(v2) $\frac{3}{4}(x-5)=\left(D_{c}\right) \frac{4}{3}(x+4)$
$9 x-45=4 x+16$
$\frac{5 x}{5}=\frac{61}{5}$

$$
x=\frac{61}{5}
$$

h)

$$
\begin{gathered}
\frac{1}{5} x-\frac{2}{3}=\frac{3}{5} x+\frac{5}{3} \\
-\frac{2}{3}-\frac{5}{3}=\frac{3}{5} x-\frac{1}{5} x \\
15\left(-\frac{7}{3}\right)=\left(\frac{2}{5} x\right) 15 \\
-\frac{35}{6}=\frac{6 x}{6} \\
x=\frac{-35}{6}
\end{gathered}
$$

