Fractions Review

Equivalent fractions: we can obtain an equivalent fraction by mutiphymo or dowohing \qquad both the numerator AND the \qquad by the same
Ex. $\frac{15}{21 \div 3} \div \frac{5}{7}$

$$
\frac{2}{3} \times 7=\frac{k}{21}
$$

Mixed numbers, improper fractions and decimals: a fraction is improper when its numerator \qquad is greater than its denominator . Its value is thus greater than 1 and can be written as a mixed number.

- changing a mixed number to an improper fraction
$\operatorname{sen} 3 \frac{5}{6}=\frac{3^{x 6}}{1 \times 6}+\frac{5}{6}=\frac{(3 \times 6)+5}{6}=\frac{23}{6}$
- changing an improper fraction to a mixed number

$$
\begin{aligned}
& \operatorname{ex}!\frac{17}{3} \rightarrow \text { how manysines dives } 3 \\
& \text { fit ints } 17 \ldots 8 \text { times }
\end{aligned}
$$

- when you change a fraction (exact value) into a decimal, you often get an approximation value. If you need an exact value, keep the fraction answer. Many calculators will will change a decimal answer into a fraction for you

$$
\text { Ti- } 83 \Rightarrow \text { MAAFA center enter }
$$

Adding and Subtracting: we need a common

denominuator
 \qquad .

$$
\text { Ex. } \begin{aligned}
& \frac{1 \times 3}{4 \times 3}+\frac{2}{3} \times 4 \\
= & \frac{3}{12}+\frac{8}{12} \\
= & \frac{11}{12}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \frac{5}{7}+4 \frac{3}{5} \times 7 \text { dharge to } \\
& =19 \times 6+23 \times 7 \quad \text { mporops }
\end{aligned}
$$

2

$$
=\frac{95}{35}+\frac{161}{35}=\frac{256}{35}
$$

Mutiplying: we do not need a

 common
denomw

- simplifying first is always easier

Ex. $\frac{11}{3} \times \frac{3}{2}=\frac{11 \times 3}{3 \times 2}=\frac{3 \times 11}{3 \times 2}=\frac{31}{31} \times \frac{11}{2}=\frac{11}{2}$
ex// $\frac{25^{5}}{7_{1}} \times \frac{49^{7}}{45^{9}}=\frac{35}{9} \quad$ ext/ $\frac{318}{255} \times \frac{55^{1}}{249^{9}} \times \frac{85}{2624}$

$$
=\frac{1 x \mid x 1}{5 \times 9 x 2}
$$

$\sum \frac{1}{90}$

Dividing: instead of dividing, we can always multiply by the \qquad reciprocal

- Recall:
$>$ the reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$
$>$ the reciprocal of $\frac{2}{!}$ is $\frac{1}{2}$
$>$ the reciprocal of $\frac{-5}{\vdots}$ is $\frac{1}{-5}=\frac{-1}{5}=-\frac{1}{5}=-0.2$
$>$ the reciprocal of $\frac{-1}{3}$ is -3

$$
\text { Ex. } \begin{aligned}
\frac{\frac{2}{3}}{\frac{1}{2}} & =\frac{2}{3} \div \frac{1}{2} \\
& =\frac{2}{3} \times \frac{2}{1} \\
& =\frac{4}{3}
\end{aligned}
$$

$$
\text { ex/l } 4^{3 / 4} \div 1^{1 / 3}
$$

improper fractions first

$$
\begin{aligned}
& =\frac{19}{4} \div \frac{4}{3} \\
& =\frac{19}{4} \times \frac{3}{4} \\
& =\frac{57}{16}
\end{aligned}
$$

