The Stairmaster TM Lab	The	aster TM Lab
-----------------------------------	-----	-------------------------

Name:

Block:

Dr	00	0	hi	re:
ы	υc	EL	ıu.	LE.

- 1) Determine the mass of each student.
- 2) Measure the height of one stair. Count the # of stairs. Calculate the height of all of the stairs.
- 3) Time each student while they run to the top of the stairs.

Data	a
------	---

Name:	Mass:	Time:		
1	kg	S	Height of one stair:	m
2	kg	s	# of stairs:	
3	kg	s	Total height of the stairs:	m
1				

Calculations:

Calculate the work de	one and power of ea	Show sample calculations	
Name:	Work (= mgh):	Power (= W/t):	
1			
2			
3			

Questions:

- 1) Consider the amount of work done by each student. What single variable determined who did the most work?
- 2) Does the amount of work done by the students depend on how fast they climbed the stairs? Explain.
- 3) Look at the power output of each student. Does doing the most work necessarily mean having the highest power output? Explain.
- 4) Although the standard unit for power is the watt, the power outputs of cars are still measured in horsepower. There are 746 W in 1 Horsepower. Calculate your horsepower.

Conclusion:

How are work and power similar? How are they different?