PRINCIPLES OF MATHEMATICS 12

Trigonometry | Practice Exam

www.math12.com

Trigonometry I Practice Exam

- 1. The transformation $g(\theta) = f(2\theta) 2$ is applied to the graph of $f(\theta) = \sin \theta$. The range of the new graph is
 - A. $-3 \le y \le -1$
 - **B.** $-2 \le y \le 0$
 - C. $-3 \le \theta \le -1$
 - **D.** $-2 \le \theta \le 0$

Use the following information to answer the next question.

- 2. The height of the satellite above the surface of the planet is, to the nearest km,
 - A. 162 km
 - B. 3952 km
 - C. 4326 km
 - D. 5162 km

Numerical Response

If the point $\left(\frac{\pi}{2}, -2\right)$ lies on the graph of $f(\theta) = a\cos\left(\theta - \frac{\pi}{4}\right) - 4$, then the value of a, to the nearest tenth, is _____.

The equation of a trigonometric function is

$$f(\theta) = k \sin\left(\theta - \frac{\pi}{3}\right) - 3, \ k > 0$$

3. The range of this function is

A.
$$-3k \le f(\theta) \le 3k$$

B.
$$-k \le f(\theta) \le k$$

C.
$$-3 - k \le f(\theta) \le -3 + k$$

D.
$$3-k \le f(\theta) \le 3+k$$

4. The graph of $y = \cos\left(\theta + \frac{\pi}{2}\right)$ is identical to the graph of

$$A. \quad y = -\cos\theta$$

B.
$$y = -\sin \theta$$

$$C. \quad y = \cos\left(\theta - \frac{\pi}{2}\right)$$

D.
$$y = \sin \theta$$

5. The y-intercept of the graph represented by $f(\theta) = -3\cos\left(k\theta + \frac{\pi}{2}\right) - b$ is

C.
$$\frac{3-b}{k}$$

$$\mathbf{D.} \quad \frac{-3-b}{k}$$

The partial graph of a trigonometric function is displayed below.

An equation that correctly represents this graph is 6.

A.
$$f(\theta) = -4\sin(\theta - 30^{\circ}) - 7$$

B.
$$f(\theta) = -4\cos(\theta - 60^{\circ}) - 7$$

$$C. \quad f(\theta) = -4\sin(\theta + 60^{\circ}) - 7$$

D.
$$f(\theta) = 4\cos(\theta + 30^{\circ}) - 7$$

If the graph above is to be represented by a function in radian mode, rather than 7. degree mode, the parameter(s) which must be changed are

$$\mathbf{A}$$
. a and d

$$\mathbf{D}$$
. b and c

6

Two trigonometric functions, f(x) and g(x), are graphed below $\frac{f(x)}{m} = \frac{f(x)}{g(x)}$

8. A statement that correctly describes the relationship between the graphs at point A is

$$\mathbf{A.} \quad f(x) = g(A)$$

$$\mathbf{B.} \quad g(m) = f(m) = k$$

C.
$$f(k) + g(k) = 2m$$

D.
$$g(m) = f(k) = m$$

9. If $\cot \theta = -\frac{3}{4}$ and $\csc \theta < 0$, then the value of $\sin \theta$ is

A.
$$-\frac{4}{5}$$

B.
$$\frac{4}{5}$$

C.
$$-\frac{3}{5}$$

D.
$$\frac{3}{5}$$

10. If $\cos A = \frac{\sqrt{3}}{2}$, $0^{\circ} < \theta < 90^{\circ}$, and $B = 60^{\circ} + A$, then the value of $\sec B$ is

- A. 30°
- **B.** $\frac{1}{90^{\circ}}$
- C. 0
- D. undefined

Use the following information to answer the next question.

Numerical Response

If the graph above is to be represented in the form $f(\theta) = a \sin[b(\theta - c)] + d$, then the value of b, to the nearest hundredth, is _____.

Numerical Response

- If $\cos \theta = -\frac{3}{5}$ and $\tan \theta > 0$, then the value of $\sin^2 \theta \cos^2 \theta$ is, to the nearest hundredth, _____.
- 11. The correct statement regarding the graphs of $f(\theta) = a \sin b\theta$ and $g(\theta) = k \sin \left[b(\theta c) \right]$ is
 - A. both graphs have a period equal to b
 - **B.** the y-intercept of $g(\theta)$ is a k units lower than the y-intercept of $f(\theta)$.
 - C. the θ intercepts of $g(\theta)$ are c units to the right of the θ intercepts of $f(\theta)$
 - **D.** the y-intercept of $g(\theta)$ is k, and the y-intercept of $f(\theta)$ is a.
- 12. A graph that has the same y-intercept as $y = \cos \theta$ is
 - A. $y = 3\cos\theta$
 - B. $y = \cos 3\theta$
 - C. $y = \cos(\theta 3)$
 - $\mathbf{D.} \quad y = \cos \theta + 3$

The partial graph of a trigonometric function is shown below. The graph has a maximum value $A\left(\frac{\pi}{2},112\right)$, and a minimum value $B\left(\frac{3\pi}{2},28\right)$

13. An equation that correctly represents the graph shown above is

A.
$$y = 42\cos\left(\theta - \frac{\pi}{2}\right) + 28$$

B.
$$y = 42\cos(\theta - \pi) + 70$$

$$C. \quad y = 42\cos\left(\theta - \frac{\pi}{2}\right) + 70$$

$$\mathbf{D.} \quad y = 42 \cos \left(\theta - \frac{3\pi}{2} \right) + 70$$

A point is on a terminal arm in standard position, as shown below.

The standard angle of the terminal arm is $\frac{16\pi}{9}$

- 14. The reference angle θ is
 - A. $\frac{2\pi}{9}$
 - **B.** 320°
 - C. $-\frac{63}{16\pi}$
 - **D.** $\frac{5\pi}{18}$

A sidewalk encloses a pie-shaped field, as illustrated below.

Numerical Response

- The total length of the sidewalk, correct to the nearest metre, is ______.
- If $\cos \theta = \frac{4}{5}$, and $\frac{3\pi}{2} < \theta < 2\pi$, the value of $\cot \theta$ is equal to 15.

 - A. $\frac{3}{5}$ B. $\frac{4}{3}$ C. $-\frac{3}{5}$ D. $-\frac{4}{3}$

16. The graphs of $f(\theta) = \sin 2\theta$ and $g(\theta) = \cos 2\theta$ intersect at the points $\left(\frac{\pi}{8}, \frac{\sqrt{2}}{2}\right)$

and $\left(\frac{5\pi}{8}, \frac{-\sqrt{2}}{2}\right)$. If the amplitude of each graph is quadrupled, the new points

A. $\left(\frac{\pi}{8}, \frac{\sqrt{2}}{8}\right)$ and $\left(\frac{5\pi}{8}, \frac{-\sqrt{2}}{8}\right)$

of intersection will be

- **B.** $\left(\frac{\pi}{8}, \frac{\sqrt{2}}{2} + 4\right)$ and $\left(\frac{5\pi}{8}, \frac{-\sqrt{2}}{2} 4\right)$
- C. $\left(\frac{\pi}{8}, 2\sqrt{2}\right)$ and $\left(\frac{5\pi}{8}, -2\sqrt{2}\right)$
- **D.** $\left(\frac{\pi}{2}, \frac{\sqrt{2}}{2}\right)$ and $\left(\frac{5\pi}{2}, \frac{-\sqrt{2}}{2}\right)$
- 17. The terminal arm of a rotation angle in standard position passes through the point (8k, -6k). If k > 0, then the exact values of $\sin \theta$, $\cos \theta$, and $\tan \theta$ are
 - A. $-\frac{5}{3}, \frac{5}{4}, -\frac{4}{3}$
 - **B.** $-\frac{3}{5}, \frac{4}{5}, -\frac{3}{4}$
 - C. $\frac{4}{5}, -\frac{3}{4}, -\frac{3}{4}$
 - **D.** $-\frac{3}{10}, \frac{7}{10}, -\frac{3}{4}$
- 18. The exact value of $-3 \tan \left(\frac{13\pi}{6} \right)$ is
 - A. $\sqrt{3}$
 - **B.** $-\sqrt{3}$
 - C. $-\frac{\sqrt{3}}{3}$
 - D. undefined

The average wing span of a particular species of butterfly is 8 cm. However, the wing span for new butterflies varies in a periodic manner from year to year. An equation that models the wing span is $w(t) = \cos^3 t - \sin(t-3) + 8$, where w(t) is the wing span in cm, and t is the time in years.

- 19. A biologist monitors the butterflies over a 25 year period. The range of the wing span is, to the nearest tenth,
 - **A.** $0 \le w(t) \le 16.0$
 - **B.** $6.7 \le w(t) \le 9.3$
 - C. $6.8 \le w(t) \le 9.2$
 - **D.** $7.0 \le w(t) \le 9.0$

A student uses technology to draw the graph of $y = \tan \theta$, as shown below.

- 20. The asymptotes of this graph occur at
 - A. $\pm n\pi$
 - B. $\pm 2n\pi$
 - C. $\frac{\pi}{2} \pm n \frac{\pi}{2}$
 - $\mathbf{D.} \quad \frac{\pi}{2} \pm n\pi$
- 21. All of the following are co-terminal angles to 150° except
 - A. -930°
 - B. $\frac{17\pi}{6}$
 - C. $\frac{23\pi}{6}$
 - D. -3.67 rad

A Ferris Wheel at an amusement park has riders get on at position A, which is 3 m above the ground. The highest point of the ride is 15 m above the ground. The ride takes 40 seconds for one complete revolution.

22. A function of the form $h(t) = a\cos[b(t-c)] + d$ can be used to accurately model the height of a Ferris Wheel over time. An equation that correctly models the Ferris Wheel shown above is

A.
$$h(t) = -6\cos 9t + 9$$

B.
$$h(t) = -6\cos 40\pi t + 9$$

C.
$$h(t) = -6\cos\frac{\pi}{3}t + 9$$

D.
$$h(t) = -6\cos\frac{\pi}{20}t + 9$$

23.	The time for a rider, who starts at position A, to travel to position B (a rotation of 135°) is				
	A. 12 s B. 13 s C. 14 s				
	D. 15 s				
24.	24. If the ride makes three complete rotations, the total amount of time a rider on Ferris Wheel will spend above 13 m, rounded to the nearest second, is				
	A. 11 s				
	B. 15 s C. 25 s				
	D. 32 s				
N	umerical Response				
6.	The height of the rider 22 seconds after the ride begins is, to the nearest tenth,				
25.	25. If the Ferris Wheel rotates counter-clockwise, instead of the original clockwise motion, the new graph is best represented by				
	A. changing the sign of the leading coefficient. B. applying the transformation $y = f(t-40)$				
	C. applying the transformation $y = f(-t)$				
	D. using a sine function instead of a cosine function, with no change to the parameters.				
26.	The ride operator decides to speed up the ride. This will affect parameter				
	A. <i>a</i>				
	B. b C. c				
	D. <i>d</i>				
6. 25.	If the Ferris Wheel rotates counter-clockwise, instead of the original clockwise motion, the new graph is best represented by A. changing the sign of the leading coefficient.				
	B. applying the transformation $y = f(t-40)$				
	parameters.				
26.					
	B. <i>b</i>				
	C. c				
	C. c				

- 27. If $f(\theta) = \sin 4\theta$, where $0 \le \theta < 3\pi$, then the number of vertical asymptotes in the graph of $\frac{1}{f(\theta)}$ is
 - A. 8
 - B. 9
 - C. 12
 - D. 13

The pendulum of a grandfather clock swings back and forth with a periodic motion that can be represented by a trigonometric function. At rest, the pendulum is 20 cm above the base. The highest point of the swing is 26 cm above the base, and it takes two seconds for a complete swing back and forth.

- 28. A cosine equation that models the height of the pendulum as a function of time, if the pendulum is released from the highest point, is
 - A. $h(t) = 6\cos \pi t + 23$
 - **B.** $h(t) = 3\cos \pi t + 20$
 - C. $h(t) = 3\cos 2\pi t + 20$
 - **D.** $h(t) = 3\cos \pi t + 23$

- **29.** The general solution to the equation $2 \sin \theta = \sqrt{3}$ is
 - **A.** $\theta = \frac{\pi}{6} \pm n\pi$, $\frac{5\pi}{6} \pm n\pi$
 - **B.** $\theta = \frac{\pi}{6} \pm 2n\pi$, $\frac{5\pi}{6} \pm 2n\pi$
 - C. $\theta = \frac{\pi}{3} \pm 2n\pi$, $\frac{4\pi}{3} \pm 2n\pi$
 - **D.** $\theta = \frac{\pi}{3} \pm 2n\pi$, $\frac{2\pi}{3} \pm 2n\pi$
- 30. An appropriate window setting for the graph of $y = 20.1\sin\frac{2\pi}{300}(t-265) + 6.2$ is
 - A. x: [0, 17000, 5000], y: [-20, 30, 10]
 - **B.** *x*: [-265, 0, 50], *y*: [0, 12.4, 1]
 - C. x: [0, 600, 100], y: [-15, 30, 5]
 - **D.** $x: [0, 2\pi, \frac{\pi}{2}], y: [-20, 30, 5]$
- 31. The graph of $g(\theta) = \sin[3\theta \pi]$ is equivalent to the graph of $y = \sin \theta$ after a
 - A. horizontal shift of π units right, then a horizontal stretch by a factor of $\frac{1}{3}$.
 - **B.** horizontal stretch by a factor of $\frac{1}{3}$, then a horizontal shift of π units right.
 - C. horizontal stretch by a factor of 3, then a horizontal shift of $\frac{\pi}{3}$ units right.
 - **D.** horizontal stretch by a factor of $\frac{1}{3}$ then a horizontal shift of $\frac{\pi}{3}$ units right.

- 32. The domain of $f(\theta) = \cot 4\theta$ is
 - $\mathbf{A.} \quad x \in R, \ x \neq \pm \frac{n\pi}{4}$
 - **B.** $x \in R$, $x \neq \pm \frac{n\pi}{2}$
 - C. $x \in R, x \neq \pm n\pi$
 - **D.** $x \in R$

The sunrise and sunset times for Yellowknife (adjusted to remove the effects of daylight savings time) are given below.

June 21, 2006		Dec. 21, 2006
Sunrise	2.57 (2:34 AM)	10.18 (10:11 AM)
Sunset	22.75 (10:45 PM)	15.00 (3:00 PM)

A sinusoidal equation of the form $T(x) = a\cos[b(x-c)] + d$ can be used to graphically model the time of sunrise or sunset throughout the year, where T(x) is the time of day (using decimal time format), and x is the day of the year.

Written Response - 10%

Determine an equation modeling the time of sunrise in Yellowknife.

• Determine an equation modeling the time of sunset in Yellowknife.

• Using technology, graph the functions representing sunrise and sunset times in Yellowknife.

- Mathematically describe the transformations required to change the graph of $f(x) = \cos x$ to the graph representing the sunset time in Yellowknife.
- Determine the number of days Yellowknife experiences a sunrise earlier than 4:00 AM.
- Determine the number of hours of daylight in Yellowknife on February 15.

A mechanic changing a tire rolls a wheel along the ground towards the car. The radius of the wheel is 42 cm, and the speed of the wheel as it rolls is 2 revolutions per second.

The diagram below illustrates the vertical motion of a point on the tire over time. It is possible to model the height of this point using a sinusoidal function of the form $h(t) = -a\sin[b(t-c)] + d$

- Determine the length of time required for one revolution of the tire.
- State the numerical value for each of the parameters a, b, c, & d.

Parameter	Value
a	
b	
С	
d	

- Write a function representing the motion of the point in the form $h(t) = -a \sin[b(t-c)] + d$
- Write a formula that predicts the times when contact between the point and ground occur. Use this formula to determine the time when the point touches the ground for the fifth time.
- A second wheel, with a radius of 39 cm, is rolled at the same speed of 2 rev/second. Compare the parameters a, b, c, & d for this wheel with the original wheel.

Written Response – 10%

3. • Complete the following table:

a - value	
b - value	
Phase Shift	
Vertical Displacement	
Period	
Domain	
Range	
x-intercepts	
y-intercepts	
Asymptotes	
(general equation)	

• Sketch the graph of $\frac{1}{f(\theta)}$ in the space below. Then, write a function $g(\theta)$ that represents the graph you drew in.

- Explain how the location of the asymptotes in $f(\theta)$ can be predicted from the graph of $g(\theta)$.
- Determine the exact value of $f\left(\frac{10\pi}{3}\right)$

You have now completed the examination. Please check over your answers carefully before self-marking. Good luck on your real exam!

Formulas

These are the formulas for Trig I you will be given on your diploma.

$$a = r\theta$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{1}{\sin \theta}$$

Answer Sheet

1. A

NR 2) 0.33

19. B

29. D

2. C

NR 3) 0.28

20. D

30. C

NR 1) 2.83

11. C

21. C

31. D

3. C

12. B

22. D

32. A

4. B

13. C

23. D

4

5. A

14. A

24. D

2...

6. A

NR 4) 111

NR 5) 14.7

7. C

15. D

25. B

8. C

16. C

26. B

9. B

17. B

27. C

10. D

18. B

28. D