

WORKSHEET

\qquad

This worksheet asks the student to graph a secant line, find the equation of a secant line, find the average velocity of a particle over a time interval, and to rank the slopes of secant lines.

Graph the function $f(x)=x^{3}+3 x^{2}-2$ on the set of axes below.

Draw a dot at the point on the curve with an x-coordinate of -3 and label it point P.

Draw a dot at the point on the curve with an x-coordinate of 1 and label it point Q.

Draw the secant line connecting points P and Q.

Find the equation of the secant line connecting points P and Q.

The position s as a function of time t for a particle moving in one dimension is given by $s(t)=5 e^{4 t+1}$, where time is in seconds and position is in meters. Calculate the average velocity of the particle over the time interval $[2,4]$.

Four functions are given below.

$$
\begin{aligned}
& a(x)=2 x^{2} \\
& b(x)=0.5 x^{2} \\
& c(x)=x^{2} \\
& d(x)=-x^{2}
\end{aligned}
$$

Rank the four functions according to the slopes of the secant lines from $x=1$ to $x=5$, from least to greatest.

Use the space below to show your work.

Answer Key

Graph the function $f(x)=x^{3}+3 x^{2}-2$ on the set of axes below.

Draw a dot at the point on the curve with an x-coordinate of -3 and label it point P.

Draw a dot at the point on the curve with an x-coordinate of 1 and label it point Q.

Draw the secant line connecting points P and Q.

Find the equation of the secant line connecting points P and Q.
$P(-3,-2)$ and $Q(1,2)$

$$
m=\frac{2-(-2)}{1-(-3)}=\frac{4}{4}=1
$$

$$
\begin{aligned}
& y=x+b \\
& 2=1+b \\
& b=1
\end{aligned}
$$

The graph of a function $f(x)$ is shown to the left. Find the equation of the secant line connecting points A and B.

$$
\begin{aligned}
& A(2,-1) \text { and } B(6,7) \\
& m=\frac{7-(-1)}{6-2}=\frac{8}{4}=2 \\
& y=2 x+b \\
& -1=2(2)+b \\
& b=-1-4=-5 \\
& y=2 x-5
\end{aligned}
$$

The position s as a function of time t for a particle moving in one dimension is given by $s(t)=5 e^{4 t+1}$, where time is in seconds and position is in meters. Calculate the average velocity of the particle over the time interval $[2,4]$.

$$
\begin{aligned}
& s(2)=5 e^{4(2)+1}=5 e^{9} \\
& s(4)=5 e^{4(4)+1}=5 e^{17} \\
& \text { average velocity }=\frac{s(4)-s(2)}{4-2}=\frac{5 e^{17}-5 e^{9}}{4-2}=6.04 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Four functions are given below.

$$
\begin{aligned}
& a(x)=2 x^{2} \\
& b(x)=0.5 x^{2} \\
& c(x)=x^{2} \\
& d(x)=-x^{2}
\end{aligned}
$$

Rank the four functions according to the slopes of the secant lines from $x=1$ to $x=5$, from least to greatest.

$$
d<b<c<a
$$

Use the space below to show your work.

$$
\begin{aligned}
& \text { slope }=\frac{a(5)-a(1)}{5-1}=\frac{2(5)^{2}-2(1)^{2}}{5-1}=12 \\
& \text { slope }=\frac{b(5)-b(1)}{5-1}=\frac{0.5(5)^{2}-0.5(1)^{2}}{5-1}=3
\end{aligned}
$$

$$
\text { slope }=\frac{c(5)-c(1)}{5-1}=\frac{(5)^{2}-(1)^{2}}{5-1}=6
$$

$$
\text { slope }=\frac{d(5)-d(1)}{5-1}=\frac{-(5)^{2}-\left(-(1)^{2}\right)}{5-1}=-6
$$

